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1 Analysis of Algorithms
The running time of a program can be modeled by the number of instruc-

tions executed by the computer. To simplify things, suppose arithmetic

operators (+, -, *, /), logical operators (&&, ||, !), comparison (==, <, >),

assignment, field access, array indexing, and so forth take 1 unit of time. (6

+ 3 * 8) / 3 would take 3 units of time, one for each arithmetic operator.

While this measure is fine for simple operations, many problems in computer

science depend on the size of the input: fib(3) executes almost instantly,

but fib(10000) will take much longer to compute.

Asymptotic analysis is a method of describing the run-time of an algo-

rithm with respect to the size of its input. We can now say,

The run-time of fib is, at most, within a factor of 2N where N

is the size of the input number.

Or, in formal notation, fib(n) ∈ O(2N ).

1.1 Define, in your own words, each of the following asymptotic notation.

(a) O

‘Big-O’ notation gives an upper bound on the runtime of a function as

the size of the input approaches infinity.

(b) Ω

‘Big-Omega’ notation gives a lower bound on the runtime of a function

as the size of the input approaches infinity.

(c) Θ

‘Big-Theta’ notation gives a tight bound on the runtime of a function

as the size of the input approaches infinity.
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1.2 Give a tight asymptotic runtime bound for containsZero as a function of

N , the size of the input array in the best case, worst case, and overall.

public static boolean containsZero(int[] array) {

for (int value : array) {

if (value == 0) {

return true;

}

}

return false;

}

Θ(1) in the best case, Θ(N) in the worst case, and Ω(1), O(N) overall.

Asymptotic analysis is always concerned with what happens as our input

grows to infinity. In this case, we’d like to describe the order of growth of

containsZero as a function of the size of the input array, but that doesn’t

say anything about the contents of the input array.

We could find a zero at the beginning of the array: this is the best case as

we can terminate in Θ(1). Or there could be no zeroes in the array at all:

this is the worst case, which terminates Θ(N). We can then describe the

overall runtime of the function taking into account all possible cases from

spanning from best to worst: hence, the overall runtime is Ω(1), O(N).
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2 Something Fishy
Give a tight asymptotic runtime bound for each of the following functions.

Assume array is an M × N matrix (rows × cols) and that M and N are

both large.

2.1

public static int redHerring(int[][] array) {

if (array.length < 1 || array[0].length <= 4) {

return 0;

}

for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array[i].length; j++) {

if (j == 4) {

return -1;

}

}

}

return 1;

}

Θ(1). The function will return once it reaches the fourth element of the first

row of the array matrix, so this function always takes constant time. (And

if the array doesn’t have any rows, or if the first row has fewer than 4 entries,

the function returns immediately.)

2.2

public static int crimsonTuna(int[][] array) {

if (array.length < 4) {

return 0;

}

for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array[i].length; j++) {

if (i == 4) {

return -1;

}

}

}

return 1;

}
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Θ(N). This function returns after it reaches the fourth row (and if there

are less than four rows it returns immediately). The number of elements it’s

able to reach in four rows is dependent on the number of columns, which in

this case is N .

Note: If we did not specify that M and N were both large, we would need

to give an O bound instead of a Θ bound here. The reason is that we would

need to consider all three cases where the size of the input gets large:

1. M approaches infinity, N is small

2. N approaches infinity, M is small

3. M and N both approach infinity

If all three cases have the same Ω and O bound then we can write a Θ bound

for this problem. However, if we consider case 2, we can see that if M < 4,

then the function will return immediately after the first if statement. Thus

not all three cases have the same Ω and O bound, so we can only provide

an O bound for the runtime.
2.3

public static int pinkTrout(int a) {

if (a % 7 == 0) {

return 1;

} else {

return pinkTrout(a - 1) + 1;

}

}

Θ(1). If a is a multiple of 7, this function will return immediately. If not,

it will call pinkTrout(a - 1) and add one to its result. We know that, at

most, it will take 6 calls until pinkTrout is called on a multiple of 7, so thus

the function takes constant time.
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2.4 (a) Give a O(·) runtime bound as a function of N , sortedArray.length.

private static boolean scarletKoi(int[] sortedArray, int x, int start, int end) {

if (start == end || start == end - 1) {

return sortedArray[start] == x;

}

int mid = end + ((start - end) / 2);

return sortedArray[mid] == x ||

scarletKoi(sortedArray, x, start, mid) ||

scarletKoi(sortedArray, x, mid, end);

}

O(N)

This method is a trap, as it seems like a binary search. But in the

recursive case, we make recursive calls on both the left and right sides,

without taking advantage of the sorted array. We can craft an input

that requires exploring the entire array in linear time.

(b) Why can we only give a O(·) runtime and not a Θ(·) runtime?

In the best case, the middle element will be equal to x, in which case

the runtime will be Θ(1). Thus, overall, the runtime of the function is

in Ω(1), O(N) and there’s no Θ(·) runtime because the Ω(·) and O(·)
runtimes don’t match.
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3 Disjoint Sets
3.1 Suppose we have a WeightedQuickUnionUF disjoint set with path compres-

sion. Show the tree structure in the union-find algorithm as the following

sequence of commands is executed.

connect(1, 2);

connect(3, 4);

connect(5, 6);

connect(1, 6);

connect(3, 6);
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3.2 Suppose we have the WeightedQuickUnionUF tree with path compression be-

low. Draw the tree after we call:

find(8);
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find(8) attempts to find the parent of 8 by searching up the tree through 7,

4, and 1, returning 1. Path compression reassigns the immediate parent of

8, 7, and 4 to 1 (note: that 4’s immediate parent doesn’t change).

3.3 Describe how to construct a WeightedQuickUnionUF tree of maximum height.
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To construct a max-height tree of N nodes, union two max-height trees with
N
2 nodes each. The height of the final tree is 1 greater than each of the

max-height N
2 -node trees.


