
CSM 61B ADTs, Trees
Spring 2019 Mentoring 6: March 4, 2019

1 Abstract Data Types
A list is an ordered sequence of items: like an array, but without worrying

about the length or size.

interface List<E> {

boolean add(E element);

void add(int index, E element);

E get(int index);

int size();

}

A set is an unordered collection of unique elements.

interface Set<E> {

boolean add(E element);

boolean contains(Object object);

int size();

boolean remove(Object object);

}

A map is a collection of key-value mappings, like a dictionary in Python.

Like a set, the keys in a map are unique.

interface Map<K,V> {

V put(K key, V value);

V get(K key);

boolean containsKey(Object key);

Set<K> keySet();

}



2 ADTs, Trees

2 Interview Questions
2.1 Define a procedure, sumUp, which returns true if any two values in the array

sum up to n.

public static boolean sumUp(int[] array, int n) {

Set<Integer> seen = new HashSet<>();

for (int value : array) {

if (seen.contains(n - value)) {

return true;

}

seen.add(value);

}

return false;

}



ADTs, Trees 3

2.2 Define a procedure, isPermutation, which returns true if a string s1 is a

permutation of s2. For example, "atc" and "tac" are permutations of "cat".

public static boolean isPermutation(String s1, String s2) {

Map<Character,Integer> characterCounts = new HashMap<>();

for (char c : s1.toCharArray()) {

int count = 0;

if (characterCounts.containsKey(c)) {

count = characterCounts.get(c);

}

characterCounts.put(c, count + 1);

}

for (char c : s2.toCharArray()) {

int count = 0;

if (characterCounts.containsKey(c)) {

count = characterCounts.get(c);

}

characterCounts.put(c, count - 1);

}

for (char c : characterCounts.keySet()) {

if (characterCounts.get(c) != 0 ) {

return false;

}

}

return true;

}



4 ADTs, Trees

3 Binary Trees
public class BinaryTree<T> {

protected Node root;

protected class Node {

public T value;

public Node left;

public Node right;

}

}

1

2

5 9

7

3

4

3.1 Define a procedure, height, which takes in a Node and outputs the height of

the tree. Recall that the height of a leaf node is 0.

private int height(Node node) {

if (node == null) {

return -1;

}

return 1 + Math.max(height(node.left), height(node.right));

}

Meta: That this Binary Tree class is an encapsulated binary tree. This

means that in a recursive function, we want to recurse on that particular

node.

What is the runtime of height?

Θ(N), where N is the number of nodes in the tree. We visit every node

once and at each node perform a constant amount of work (null check).

The actual “work” that contributes to the order of growth is done in the

recursion, where we repeatedly step down through every node in the tree.



ADTs, Trees 5

3.2 Define a procedure, isBalanced, which takes a Node and outputs whether or

not the tree is balanced. A tree is balanced if the left and right branches

differ in height by at most one and are themselves balanced.

private boolean isBalanced(Node node) {

if (node == null) {

return true;

} else if (Math.abs(height(node.left) - height(node.right)) <= 1) {

return isBalanced(node.left) && isBalanced(node.right);

}

return false;

}

What is the runtime of isBalanced?

Θ(N) in the best case, Θ(N logN) in the worst case. This can also be read

as Ω(N), O(N logN) overall.

The best case is if the tree is unbalanced at the root, meaning that the

difference in the height of the root’s left branch and the root’s right branch

is greater than one. In this case, we just call height twice, once on the

left branch and once on the right subtree. After these two calls, we can

immediately see that the tree is unbalanced, so we return false. This leads

to a runtime of Θ(N) in the best case.

The worst case is if the tree is perfectly balanced. In this case, first, we

will call height on node.left and node.right. Each of these nodes has a

sub-tree of roughly N/2 nodes, and so at this level, 2 height calls are made,

each of which costs N/2. The total work done on this level is Θ(N). Next,

node.left will call height on its left and right children, and node.right will

do the same. These children are now on the third level of the tree (the root

node being the first level). Note that these third-level children now have a

subtree of roughly N/4 nodes each. 4 height calls are made at this level, for

a total cost of Θ(N) at this level too. As we keep going, each level will do

Θ(N) work. Note that the bottom-most level (leaf-level) of such a perfectly

balanced tree would have roughly N/2 nodes, and each height call would

take constant time, for a total of Θ(N/2) = Θ(N) work at the leaf-level too.

Now that we have established that each level does Θ(N) work, all that we

need to figure out is how many levels there are in our worst case situation.

This tree has log n levels, since a perfectly balanced tree has log n levels.

Therefore, the total runtime cost for the worst case is Θ(N logN), which

can also be read as O(N logN)



6 ADTs, Trees

3.3 Define isSymmetric which checks whether the binary tree is a mirror of itself.

public boolean isSymmetric() {

if (root == null) {

return true;

}

return isSymmetric(root.left, root.right); // use helper method

}

private boolean isSymmetric(Node left, Node right) {

if (left == null) {

return right == null; // if left is null, right must also be null

} else if (right == null) {

return false; // left is not null but right is null, so not symmetric

} else if (!left.value.equals(right.value)) {

return false; // left value and right value are unequal

} else {

return isSymmetric(left.right, right.left) &&

isSymmetric(left.left, right.right);

}

}

Meta: We can use a helper function here to create a new method that takes

in two parameters, the left and the right branch of the current tree we are

rooted at. This allows us to more easily compare the content of the two

branches to see if they are the same.



ADTs, Trees 7

4 Binary Search Trees
4.1 Provide tight asymptotic runtime bounds in terms of N , the number of nodes

in the tree, for the following operations and data structures.

Operations Binary Search Balanced Search

boolean contains(E e); Ω(1) O(N) Ω(1) O(logN)

boolean add(E e); Ω(1) O(N) Θ(logN)

For boolean contains(E e), the best case is always Θ(1) for both binary

search trees and balanced search trees. This is the case if the node we are

looking for is at the root of the tree. The worst case for binary search trees

is if the tree is completely unbalanced (a spindly tree), and the node we are

looking for is a leaf, yielding a time complexity of Θ(N) because we have to

visit every node.

However, for a balanced search tree, we know that the height of the tree will

never exceed Θ(logN). Thus, even if the node we are looking for is a leaf,

we will never have to search more than Θ(logN) nodes.

For boolean add(E e), we always have to insert nodes as a a leaf. For a

binary search tree, imagine a right-leaning spindly tree (where all of the

root’s children are in its right subtree). To insert a node in the root’s left

subtree, this would simply be a constant time operation because there are

no nodes in the left subtree, so we would just need to set the root’s left child

to the node we are inserting. This is the best case for binary search trees, so

the runtime is Θ(1) in this case. However, to insert a node in the root’s right

subtree, we would have to move all the way down the spindly tree, passing

every node, to reach the leaf node to insert the new node. This is the worst

case for binary search trees, so the runtime is Θ(N).

For balanced binary search trees, the height will always be Θ(logN) nodes.

This means that every insertion will always have to visit Θ(logN) nodes to

reach a leaf. Thus, the runtime is always in Θ(logN).


