
CSM 61B Trees & Hash
Spring 2019 Mentoring 7: March 11, 2019

1 Binary Search Trees
public class BinarySearchTree<T extends Comparable<T>> {

protected Node root;

protected class Node {

public T value;

public Node left;

public Node right;

}

}

1.1 For each of the following binary search trees, determine if the height of the

tree is the same as the height of the optimal tree with the same elements.

6

5

2

3

4

9

7 10

10

6

3

1 5

12

11

9

7

5

3 6

8

11

13



2 Trees & Hash

2 Balanced Trees

8

6

3 7

14

10 15 16

2.1 Draw what the 2-3 tree would look like after inserting 18, 12, and 13.

8

6

3 7

14 16

10 15 18

8

6

3 7

14 16

10 12 15 18

8 14

6

3 7

12

10 13

16

15 18

2.2 Now, convert the resulting 2-3 tree to a left-leaning red-black tree.

14

8

6

3 7

12

10 13

16

15 18



Trees & Hash 3

3 Hashing
3.1 (a) Draw the diagram that results from the following operations on a Java

HashMap. Integer::hashCode returns the integer’s value.

put(3, "monument");

put(8, "shrine");

put(3, "worker");

put(5, "granary");

put(13, "worker");

(b) Suppose a resize occurs, doubling the array to size 10. What changes?



4 Trees & Hash

4 Hash Codes
4.1 What does it mean for a hashcode to be valid?

4.2 Which of the following hashcodes are valid? Good?

class Point {

private int x, y;

private static int count = 0;

public Point(int x, int y) {

this.x = x;

this.y = y;

count += 1;

}

}

(a)

public void hashCode() {

System.out.print(this.x + this.y);

}

(b)

public int hashCode() {

Random random = new Random();

return random.nextInt();

}

(c)

public int hashCode() {

return this.x + this.y;

}

(d)

public int hashCode() {

return count;

}



Trees & Hash 5

(e)

public int hashCode() {

return 4;

}



6 Trees & Hash

5 Extra Practice: Trees
5.1 Given a node in a binary search tree (with parent pointers), implement

successor which returns the next node in the in-order traversal of the BST.

If there is no successor, return null.

public class BinarySearchTree<T extends Comparable<T>> {

protected Node root;

protected class Node {

public T value;

public Node parent, left, right;

}

private Node successor(Node node) {


