
CSM 61B Trees & Hash
Spring 2019 Mentoring 7: March 11, 2019

1 Binary Search Trees
public class BinarySearchTree<T extends Comparable<T>> {

protected Node root;

protected class Node {

public T value;

public Node left;

public Node right;

}

}

1.1 For each of the following binary search trees, determine if the height of the

tree is the same as the height of the optimal tree with the same elements.
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2 Balanced Trees
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2.1 Draw what the 2-3 tree would look like after inserting 18, 12, and 13.
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2.2 Now, convert the resulting 2-3 tree to a left-leaning red-black tree.
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3 Hashing
3.1 (a) Draw the diagram that results from the following operations on a Java

HashMap. Integer::hashCode returns the integer’s value.

put(3, "monument");

put(8, "shrine");

put(3, "worker");

put(5, "granary");

put(13, "worker");

(b) Suppose a resize occurs, doubling the array to size 10. What changes?
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4 Hash Codes
4.1 What does it mean for a hashcode to be valid?

4.2 Which of the following hashcodes are valid? Good?

class Point {

private int x, y;

private static int count = 0;

public Point(int x, int y) {

this.x = x;

this.y = y;

count += 1;

}

}

(a)

public void hashCode() {

System.out.print(this.x + this.y);

}

(b)

public int hashCode() {

Random random = new Random();

return random.nextInt();

}

(c)

public int hashCode() {

return this.x + this.y;

}

(d)

public int hashCode() {

return count;

}
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(e)

public int hashCode() {

return 4;

}
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5 Extra Practice: Trees
5.1 Given a node in a binary search tree (with parent pointers), implement

successor which returns the next node in the in-order traversal of the BST.

If there is no successor, return null.

public class BinarySearchTree<T extends Comparable<T>> {

protected Node root;

protected class Node {

public T value;

public Node parent, left, right;

}

private Node successor(Node node) {


