
CSM 61B Heaps & Tries
Spring 2019 Mentoring 8: March 18, 2019

1 Heaps of Fun
1.1 In general, there are 4 ways to heapify. Which 2 ways actually work?

• Level order, bubbling up

• Level order, bubbling down

• Reverse level order, bubbling up

• Reverse level order, bubbling down

9

6

9 5

7

1 8

1.2 (a) Show the heapification of the tree. (note we want to create a min-heap)

(b) Now, insert the value 2.

(c) Finally, remove the value 1.

1.3 The largest item in a heap must appear in position 1, and the second largest

must appear in position 2 or 3. Give the list of positions in a heap where

the kth largest can appear for k ∈ {2, 3, 4}. Assume values are distinct.



2 Heaps & Tries



Heaps & Tries 3

2 Tries
2.1 Draw the trie that results from inserting "hi", "hello", and "hey".

2.2 Given a list of words (possibly repeated), devise a strategy to efficiently

return a list of all the words that start with a given prefix.

2.3 Given a dictionary of n words, where the average length of the words is l,

how long would it take to insert all of the words into a Trie? Express your

answer in terms of a tight asymptotic bound.

2.4 With that same Trie already containing those n words, how long would

it take to check whether or not a new word of length l was in our initial

dictionary? Express the runtime in both Big Omega and Big O notation.



4 Heaps & Tries

3 Hashing Again
3.1 You are a software engineer for a newspaper company! Your users are com-

plaining about how slowly your website loads. After performing some perfor-

mance profiling, you realize that the database queries are slowing the system

down.

To fix the issue, you decide to implement a cache that contains the most

recently accessed articles. The cache is only fast if it’s small so you can only

store a maximum of N articles. You want to keep only the N most recent

articles that people have read. If a new, unique article is accessed, then the

oldest article should be replaced.

Describe how you would implement this cache. What combinations of data

structures would you use to build this efficiently?



Heaps & Tries 5

4 Extra Practice: Trie-ing Extra Hard
You’re living in the future in the late 1990’s. Everyone owns a cell phone

— the handheld kind — and SMS is the bee’s knees. However, cell phones

only have 9 keys while there are 26 letters in the alphabet. Your company

is on the verge of developing a new algorithm for faster texting called ”Text

on 9 keys”, or ”T9”. Each keypress maps to one of three or four letters in

the alphabet.

Given a trie containing the dictionary of words, define a procedure, getWords,

that returns the set of matching words for a given key-press sequence.

public interface TrieNode {

public char getCharacter();

public boolean isWord();

public String getWord();

public Map<Character,TrieNode> getChildren();

}

public class T9 {

private static char[][] KEY_MAPPINGS = {

{}, {}, // keys 0 and 1 don't map to any characters

{'a', 'b', 'c'},

{'d', 'e', 'f'},

{'g', 'h', 'i'},

{'j', 'k', 'l'},

{'m', 'n', 'o'},

{'p', 'q', 'r', 's'},

{'t', 'u', 'v'},

{'w', 'x', 'y', 'z'}

};

public static Set<String> getMatches(int[] keyPresses, TrieNode words) {

return getMatches(keyPresses, words, 0);

}

private static Set<String> getMatches(int[] keyPresses, TrieNode wordNode, int index) {


