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1 Heaps of Fun
1.1 In general, there are 4 ways to heapify. Which 2 ways actually work?

• Level order, bubbling up

• Level order, bubbling down

• Reverse level order, bubbling up

• Reverse level order, bubbling down
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1.2 (a) Show the heapification of the tree. (note we want to create a min-heap)

(b) Now, insert the value 2.

(c) Finally, remove the value 1.

1.3 The largest item in a heap must appear in position 1, and the second largest

must appear in position 2 or 3. Give the list of positions in a heap where

the kth largest can appear for k ∈ {2, 3, 4}. Assume values are distinct.
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2 Tries
2.1 Draw the trie that results from inserting "hi", "hello", and "hey".

2.2 Given a list of words (possibly repeated), devise a strategy to efficiently

return a list of all the words that start with a given prefix.

2.3 Given a dictionary of n words, where the average length of the words is l,

how long would it take to insert all of the words into a Trie? Express your

answer in terms of a tight asymptotic bound.

2.4 With that same Trie already containing those n words, how long would

it take to check whether or not a new word of length l was in our initial

dictionary? Express the runtime in both Big Omega and Big O notation.
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3 Hashing Again
3.1 You are a software engineer for a newspaper company! Your users are com-

plaining about how slowly your website loads. After performing some perfor-

mance profiling, you realize that the database queries are slowing the system

down.

To fix the issue, you decide to implement a cache that contains the most

recently accessed articles. The cache is only fast if it’s small so you can only

store a maximum of N articles. You want to keep only the N most recent

articles that people have read. If a new, unique article is accessed, then the

oldest article should be replaced.

Describe how you would implement this cache. What combinations of data

structures would you use to build this efficiently?
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4 Extra Practice: Trie-ing Extra Hard
You’re living in the future in the late 1990’s. Everyone owns a cell phone

— the handheld kind — and SMS is the bee’s knees. However, cell phones

only have 9 keys while there are 26 letters in the alphabet. Your company

is on the verge of developing a new algorithm for faster texting called ”Text

on 9 keys”, or ”T9”. Each keypress maps to one of three or four letters in

the alphabet.

Given a trie containing the dictionary of words, define a procedure, getWords,

that returns the set of matching words for a given key-press sequence.

public interface TrieNode {

public char getCharacter();

public boolean isWord();

public String getWord();

public Map<Character,TrieNode> getChildren();

}

public class T9 {

private static char[][] KEY_MAPPINGS = {

{}, {}, // keys 0 and 1 don't map to any characters

{'a', 'b', 'c'},

{'d', 'e', 'f'},

{'g', 'h', 'i'},

{'j', 'k', 'l'},

{'m', 'n', 'o'},

{'p', 'q', 'r', 's'},

{'t', 'u', 'v'},

{'w', 'x', 'y', 'z'}

};

public static Set<String> getMatches(int[] keyPresses, TrieNode words) {

return getMatches(keyPresses, words, 0);

}

private static Set<String> getMatches(int[] keyPresses, TrieNode wordNode, int index) {


