
CSM 61B Graphs & Searches
Spring 2019 Mentoring 9: April 1, 2019

1 Tree Traversal
Level-Order Traversals Nodes are visited top-to-bottom, left-to-right.

Depth-First Traversals Visit deep nodes before shallow ones.

1

2

5 9

7

3

4

1.1 Give the ordering for each depth-first traversal of the tree.

(a) Pre-order

(b) In-order

(c) Post-order

1.2 Give the level-order traversal of the tree.

2 Graphs & Searches

2 Searches
2.1 For the graph below, write the order in which vertices are visited using the

specified algorithm starting from A. Break ties by alphabetical order.

C G

F

D

B

E

H

A

(a) DFS

(b) BFS

Graphs & Searches 3

3 Shortest Paths
3.1 Find the path from the start, S, to the goal, G, when running each of the

following algorithms.

The heuristic, h, estimates the distance from each node to the goal.

E h = 1

S
h = 6

A
h = 5

B
h = 6

D
h = 2

G
h = 0

C
h = 7

1

1

1

3

8 1

2

1

(a) Which path does Dijkstra’s return?

(b) Which path does A* search return?

A* search is an algorithm that combines the total distance from the

start with the heuristic to optimize the search procedure.

(c) What is the runtime of Dijkstra’s? A*? What is the space requirement

for both?

4 Graphs & Searches

4 Networking
4.1 Suppose we want to design a telephone network connecting all the cities,

labeled A to G, in a neighborhood. We’d like to do so at the least cost.

B

A C

D

F

E

G

4
1

6

5
2

5

4

6

8

5

1

7

(a) In a graph with N vertices and M edges, how many edges form a

minimum spanning tree?

(b) Will the new graph contain any cycles? Describe its structure.

(c) One algorithm to find a minimum spanning tree is Kruskal’s algorithm.

1. Sort all the edges by increasing order of their weight.

2. Pick the smallest edge and check if it forms a cycle with the span-

ning tree so far. If it doesn’t form a cycle, add this edge to the

spanning tree.

3. Repeat the previous step until there are |V | − 1 edges in the span-

ning tree, where |V | is the number of vertices in the graph.

Run Kruskal’s Algorithm to find a minimum spanning tree.

Graphs & Searches 5

5 Algorithms Extra Practice

Traversal Visit all the nodes in the graph.

· Depth-first traversal (preorder and postorder)

· Level-order traversal

Search Given s, find a goal v.

· Depth-first search

· Iterative-deepening depth-first search

· Breadth-first search

Single Pair Shortest Path Given s, find the shortest path to a goal v.

· Uniform cost search

· Greedy search

· A* search

Single Source Shortest Path Given s, find the shortest path to all nodes.

· Dijkstra’s algorithm

Minimum Spanning Tree A spanning tree, or acyclic subgraph connect-

ing all the nodes with the least total edge weight.

· Prim’s algorithm

· Kruskal’s algorithm

5.1 Is this algorithm for computing the single pair shortest path correct?

Given a starting vertex, s, and an ending vertex, v, compute the shortest

path between s and v by running DFS, but at each node exploring the

shortest outgoing edge first until v is reached. Return the s to v path in the

DFS tree.

6 Graphs & Searches

5.2 Briefly describe an efficient algorithm and the runtime for finding a minimum

spanning tree in an undirected, connected graph G = (V,E) when the edge

weights satisfy:

(a) For all e ∈ E, we = 1. (All edge weights are 1.)

(b) For all e ∈ E, we ∈ {1, 2}. (All edge weights are either 1 or 2.)

5.3 Given a weighted, directed graph G where the weights of every edge in G are

all integers between 1 and 10, and a starting vertex s in G, find the distance

from s to every other vertex in the graph where the distance between two

vertices is defined as the weight of the shortest path connecting them, or

infinity if no such path exists.

(a) Design an algorithm for solving the problem better than Dijkstra’s.

(b) Give the runtime of your algorithm.

