
CSM 61B More MSTs & Sorting
Spring 2019 Mentoring 10: April 8, 2019

1 Prim’s Algorithm
The cut property states that given any cut, the minimum weight crossing

edge is in the MST. The converse is also true, that if an edge is in the MST,

then it must be the minimum weight crossing edge across some cut. This

property is a key idea behind Prim’s algorithm.

1.1 Describe Prim’s algorithm.

1.2 We can use a binary heap priority queue to implement Prim’s. What would

be the runtime of Prim’s using this implementation?

1.3 Consider the telephone network from last week. Construct a minimum span-

ning tree by running Prim’s Algorithm from node A.

B

A C

D

F

E

G

4
1

6

5
2

5

4

6

8

5

1

7



2 More MSTs & Sorting

2 Maximum Spanning Trees
2.1 We have two algorithms, Kruskal’s and Prim’s, that allow us to find a Mini-

mum Spanning Tree. Consider the problem of finding a Maximum Spanning

Tree

(a) Describe a modification to Kruskal’s algorithm that would allow us to

find a Maximum Spanning Tree of a graph

(b) Can we use a similar approach to modify Djikstra’s algorithm to find

the Maximum Path between two nodes?



More MSTs & Sorting 3

3 Feeling Out of Sorts?
So far, we’ve learned a few different types of basic sorting algorithms. While

sorting might seem like a simple idea, there are many real-world applications

of sorting, and several different algorithms that we can use depending on the

situation.

In the table below, fill out the best and worst-case runtimes for each of the

sorting algorithms provided.

Algorithm Best-case Worst-case

Selection Sort

Insertion Sort

Merge Sort

Heapsort

3.1 Give a best and worst case input for insertion sort.

3.2 Do you expect selection or insertion sort to run more quickly on a reverse

list?

3.3 In Heapsort do we use a min-heap or max-heap? Why?

3.4 Sort the following array using Heap Sort. [3, 2, 1, 5, 6, 8, 7]



4 More MSTs & Sorting

4 Vertigo
4.1 We have a list of N elements that should be sorted, but to our surprise

we recently discovered that there are at most k pairs out of order, or k

inversions, in the list. The list { 0, 1, 2, 6, 4, 5, 3 }, for example,

contains 5 inversions: (6, 4), (6, 5), (6, 3), (4, 3), (5, 3).

For each value of k below, state the most efficient sorting algorithm and give

a tight asymptotic runtime bound.

(a) k ∈ O(logN)

(b) k ∈ O(N)

(c) k ∈ O(N2)


