
CSM 61B More MSTs & Sorting
Spring 2019 Mentoring 10: April 8, 2019

1 Prim’s Algorithm
The cut property states that given any cut, the minimum weight crossing

edge is in the MST. The converse is also true, that if an edge is in the MST,

then it must be the minimum weight crossing edge across some cut. This

property is a key idea behind Prim’s algorithm.

1.1 Describe Prim’s algorithm.

Starting from any arbitrary source, repeatedly add the shortest edge that

connects some node in the tree to some node outside the tree.

Another way of thinking about Prim’s algorithm is that it is basically just

Dijktra’s algorithm, but where we consider node in order of the distance

from the entire tree, rather than the distance from the start.

1.2 We can use a binary heap priority queue to implement Prim’s. What would

be the runtime of Prim’s using this implementation?

In the worst case, we perform V insertions and deletions, each costing

O(log V ) time. We also decrease priorities E times, also costing O(log V )

time. In total, assuming that E>V, Prim’s will take O(E log V ) time to

complete.

1.3 Consider the telephone network from last week. Construct a minimum span-

ning tree by running Prim’s Algorithm from node A.

B

A C

D

F

E

G

4
1

6

5
2

5

4

6

8

5

1

7



2 More MSTs & Sorting

B

A C

D

F

E

G

4
1

2

4

6
1

Meta:

Intro: The cut property is introduced in the general statement for this ques-

tion. Make sure to have a simple example to use as a visual when explaining

it to students.

1.3: Your board work for how to run through Prim’s should be very simi-

lar to how you ran through Djikstra’s algorithm in the previous worksheet.

Only add edges to your MST as you pop off the Fringe (PQ). Additionarlly,

after running through the problem, explain how at a high level, for every

edge added, we just added the shortest edge not in the MST into the MST.

Use the cut property to explain this.



More MSTs & Sorting 3

2 Maximum Spanning Trees
2.1 We have two algorithms, Kruskal’s and Prim’s, that allow us to find a Mini-

mum Spanning Tree. Consider the problem of finding a Maximum Spanning

Tree

(a) Describe a modification to Kruskal’s algorithm that would allow us to

find a Maximum Spanning Tree of a graph

Negate all the edge weights and find the minimum spanning tree us-

ing Kruskal’s algorithm. Nothing in Kruskal’s algorithm assumes the

weights are positive. Therefore, the minimum of the weights negated,

is achieved by the maximum of the original weights, and we will have a

Maximum Spanning Tree.

Similar logic applies for using Prim’s algorithm with negated edge

weights.

(b) Can we use a similar approach to modify Djikstra’s algorithm to find

the Maximum Path between two nodes?

No, because Djikstra’s doesn’t work with negative edge weights. This is

because Djikstra’s relies on the assumption that if all weights are non-

negative, adding an edge can never make a path shorter. Therefore,

we cannot simply negate edge weights and use Djikstra’s to find the

Maximum path.



4 More MSTs & Sorting

3 Feeling Out of Sorts?
So far, we’ve learned a few different types of basic sorting algorithms. While

sorting might seem like a simple idea, there are many real-world applications

of sorting, and several different algorithms that we can use depending on the

situation.

In the table below, fill out the best and worst-case runtimes for each of the

sorting algorithms provided.

Algorithm Best-case Worst-case

Selection Sort Θ(N2) Θ(N2)

Insertion Sort Θ(N) Θ(N2)

Merge Sort Θ(N logN) Θ(N logN)

Heapsort Θ(N) Θ(N logN)

[Selection Sort] In selection sort, we loop through the array to find the small-

est element. Next, we swap the element at index-0 with the smallest ele-

ment. Next, we repeat this procedure, but only looking at the array starting

at index-1.

Runtime, Best, Worst Case: Since it takes O(N) time to loop through the

array, and we loop through the array N times, this algorithm has a runtime

of Θ(N2). Note that even if the array is already sorted, we need to iterate

through it to find the minimum, and then iterate through it again, and again,

N times.

[Insertion Sort] This is the way an adult would normally sort a pack of cards.

Iterating through the array, swapping each element left-wards.

Best Case: Given a sorted array, { 1, 2, 3, 4 }, this algorithm would

iterate through the array just once, and do 0 swaps, since all elements are

already as left-wards as they can be. Worst Case: Given a fully unsorted

array, { 4, 3, 2, 1 }, this algorithm would first swap (3, 4), then to move

2 left-wards, it needs to do 2 swaps. Finally to move 1 left-wards, it needs

to do 3 swaps. This is of the ordering of O(n2) swaps.

[Merge Sort] Given an array, divide it into two equal halves, and call merge-

sort recursively on each half. Take the recursive leap of faith and assume

that each half is now sorted. Merge the two sorted halves. Merging takes a

single iteration through both arrays, and takes O(N) time. The base case is

if the input list is just 1 element long, in which case, we return the list itself.



More MSTs & Sorting 5

Best case, Worst Case, Runtime: Since the algorithm divides the array and

recurses down, this takes Θ(N logN) time, no matter what.

[Heap Sort] Place all elements into a heap. Remove elements one by one

from the heap, and place them in an array.

Recall: Creating a heap of N elements takes N logN time, because we have

to bubble-up elements. Removing an element from a heap takes logN time,

also because of bubbling and sinking. Best Case: Say that all the elements

in the input array are equal. In this case, creating the heap only takes O(N)

time, since there is no bubbling-down to be done. Also, removing from the

heap takes constant time for the same reason. Since we remove N elements,

and creating the heap takes O(N) time, the overall runtime is O(N). Worst

Case: Any general array would require creating the heap with bubbling

which itself takes N logN time.

3.1 Give a best and worst case input for insertion sort.

Best case is a completely sorted array with 0 inversions while the worst case

is a reverse-sorted array with Θ(N2) inversions. Recall that the runtime for

insertion sort is given by Θ(N + K) where K is the number of inversions.

3.2 Do you expect selection or insertion sort to run more quickly on a reverse

list?

Asymptotically, both algorithms operate run in Θ(N2) in this scenario where

N is the length of the reversed list.

Selection sort might be better since it performs only Θ(N) swaps as opposed

to Θ(N2) swaps in insertion sort’s case.

3.3 In Heapsort do we use a min-heap or max-heap? Why?

We use a max-heap because then we can fill in the array of sorted elements

from the back to the front in the same array we use to represent our heap.

3.4 Sort the following array using Heap Sort. [3, 2, 1, 5, 6, 8, 7]

Heapify the array (may be easier to visualize with a tree structure)

[3, 2, 1, 5, 6, 8, 7]

[3, 6, 1, 5, 2, 8, 7]

[3, 6, 8, 5, 2, 1, 7]

[8, 6, 3, 5, 2, 1, 7]

[8, 6, 7, 5, 2, 1, 3]

Then delete the largest element and place it at the back of the array. Do this

until the array is sorted. [1, 2, 3, 5, 6, 7, 8] Meta: Walkthrough heapification

of the array when you go over solutions. No need to justify why/when we



6 More MSTs & Sorting

sink and swim nodes. Students should be comfortable with this already.

Redirect students to the previous part when they answered why we use a

max heap, and emphasize that we can do everything within one array.



More MSTs & Sorting 7

4 Vertigo
4.1 We have a list of N elements that should be sorted, but to our surprise

we recently discovered that there are at most k pairs out of order, or k

inversions, in the list. The list { 0, 1, 2, 6, 4, 5, 3 }, for example,

contains 5 inversions: (6, 4), (6, 5), (6, 3), (4, 3), (5, 3).

For each value of k below, state the most efficient sorting algorithm and give

a tight asymptotic runtime bound.

(a) k ∈ O(logN)

Insertion sort is the most efficient in this case because its runtime is

O(N +k). The overall runtime bound for insertion sort in this scenario

is O(N).

(b) k ∈ O(N)

Insertion sort for the same reason above. The overall runtime bound

for insertion sort in this scenario is O(N).

(c) k ∈ O(N2)

Merge sort, quicksort, or heap sort would be ideal here since the number

of inversions causes insertion sort to run in O(N2) runtime. Using one

of the three sorts listed earlier yields a runtime in O(N logN) in the

normal case.


