
CSM 61B More Sorting!
Spring 2019 Mentoring 11: April 15, 2019

1 Stability
Stability is a property of some sorting algorithms. Stability essentially means

that if we have two elements that are equal, then their relative ordering in

the sorted list is the same as the ordering in the unsorted list. For instance,

let’s say that we had an array of integers.

{ 1, 2, 1, 3, 1, 2, 4 }

Since we have multiple 1 and 2s, let’s label these.

{ 1A, 2A, 1B, 3, 1C, 2B, 4 }

A stable sort would result in the final list being

{ 1A, 1B, 1C, 2A, 2B, 3, 4 }

Why is this desirable? Say that we have an Excel spreadsheet where we are

recording the names of people who log in to CSM Scheduler. The first column

contains the timestamps, and the second column contains their username.

The timestamps are already ordered in increasing order. If we wanted to sort

the username, so that we could group the list to see when each username

logs in, we would want that the timestamps maintain their relative order.

This is precisely what a stable sort ensures.

1.1 Why does Java’s built-in Array.sort method use quicksort for int, long,

char, or other primitive arrays, but merge sort for all Object arrays?



2 More Sorting!

2 Pivot Choice
2.1 For each pivot selection strategy below, what is the best, average and worst

case runtime?

(a) Always choose the first value in the list.

(b) Always find and choose the median value in the list. Assume finding

the median takes O(N) time where N is the length of the list.

(c) Always choose a random pivot.



More Sorting! 3

3 Even More Sorting
In the table below, the runtimes of the sorts gone over in last week’s sec-

tion are written for you. Fill out the best-case and worst-case runtimes for

Quicksort as well as whether all of the sorts we’ve seen so far are stable or

not.

Algorithm Best-case Worst-case Stable

Selection Sort Θ(N2) Θ(N2)

Insertion Sort Θ(N) Θ(N2)

Merge Sort Θ(N logN) Θ(N logN)

Heapsort Θ(N) Θ(N logN)

Quicksort

3.1 Run the quicksort algorithm. Assume we pick the middle element as the

pivot; if there is no exact middle, pick the element to the right of the middle.

{ 1, 3, 8, 2, 6, 4, 5, 9 }



4 More Sorting!

4 Sorting Out My Head!
4.1 Web developers use many different sorts for the different types of lists that

they might want to sort. For each of these, provide the best sorting algorithm

amongst the following: Mergesort, Quicksort (with Hoare Partitioning), In-

sertion Sort, LSD Sort. Also, state the worst-case runtime.

(a) A list of N packets received by a server over time. Each packet has the

timestamp at which the sender sent it. However, some packets may be

dropped or arrive out-of-order due to the faulty network. Sort this list

by that timestamp (sent time).

(b) A list of N websites. Each website has the number of total visitors.

Sort this list by visitor count.

(c) After sorting by visitor count, we now want to sort by webpage file size.

If websites have the same file size, they should be ordered by visitor

count.

(d) A list of 20 names. Sort in alphabetical order.



More Sorting! 5

5 QuickSort vs. Merge Sort
5.1 (a) What are the advantages and disadvantages of quicksort?

(b) What are the advantages and disadvantages of merge sort?



6 More Sorting!

6 Cheapest Flights Within K Stops Extra Practice

6.1 This question was adapted from LeetCode: cheapest-flights-within-k-stops

There are n cities connected by m flights. Each flight starts from city u and

arrives at v with a price w. Thus a city is represented as [u, v, w].

Given all the cities and flights, together with starting city src and the des-

tination dst, your task is to find the cheapest price from src to dst with up

to K stops. If there is no such route, output -1.


