
CSM 61B Sorting Algorithms
Spring 2019 Mentoring 12: 22 April, 2019

1 QuickCo
Malicious Mallory has been hired by a competitor to break into QuickCo, the

world leader in sorting algorithms, and tamper with its Quicksort algorithms

by making them as slow as possible. Mallory succeeded in unlocking the

mainframe, but now she needs your help in slowing QuickCo’s algorithms

down to a halt!

For this question, assume that the Quicksort algorithm used has three steps.

1. Iterate through the array, to count how many elements are smaller

than the pivot, larger than the pivot, and equal to the pivot.

2. Create 3 arrays for smaller, larger and equal elements of the correct

size and then, in a second run through the array, place the appropriate

elements in these arrays.

3. Finally, recurse on the smaller and larger arrays.

int[] data = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

1.1 Mallory decides to change the way QuickCo chooses a pivot for Quicksort.

Given the int[] data of size n, what choice of pivot would cause the worst-

case runtime for Quicksort? Expand out the first few steps of the quicksort

algorithms in such a case.

Pivot: Pick the first element, last element, or alternate picking the first and

last elements.

Picking the first element, the Quicksort algorithm will continue in the fol-

lowing fashion:

{ 1 }, { 2, 3, 4, 5, 6, 7, 8 }

{ 1 }, { 2 }, { 3, 4, 5, 6, 7, 8 }

{ 1 }, { 2 }, { 3 }, { 4, 5, 6, 7, 8 }

. . .

Since the size of our problem is decreasing only by one at each step, this

will end up doing O(N) work in the first step, O(N − 1) in the second step,

O(N − 3) in the next, and so on. This will take O(N2) work.



2 Sorting Algorithms

1.2 Mallory finds an algorithm which always selects the middle element but she

is unable to gain write access to it. If the array has an even number of

elements, the algorithm picks the element to the left. However, Mallory

discovers a way to intercept the incoming data and rearrange it before the

algorithm runs.

Given the int[] data of size n, rearrange the numbers such that the algo-

rithm will run in its worst-case time. Expand out the first few steps of the

quicksort algorithms in such a case.

There are multiple solutions to this problem.

Case 1: { 8, 6, 4, 2, 1, 3, 5, 7, 9 }

The pivot starts as the smallest element and increases: 1, 2, 3, ...

Case 2: { 2, 4, 6, 8, 9, 7, 5, 3, 1 }

The pivot starts as the largest element and decreases: 9, 8, 7, ...

Case 3: { 6, 7, 8, 9, 1, 2, 3, 4, 5 }

The pivot alternates between the smallest and largest element: 1, 9, 2, 8, 3, 7...

In the third case, for example, the Quicksort algorithm will proceed as fol-

lows:

Pivot: { 1 }; Greater: { 6, 7, 8, 9, 2, 3, 4, 5 };

{ 1 }, { 6, 7, 8, 2, 3, 4, 5 }, { 9 }

{ 1 }, { 2 }, { 6, 7, 8, 3, 4, 5 }, { 9 }

. . .

With a similar reasoning as the worst case pivot choice runtime, this will

also take O(N2) work.

1.3 Does the worst-case runtime of Quicksort depend on the array order, pivot

choice, or both? Why?

The worst-case runtime of Quicksort depends on both the array order and

the choice of pivots. The worst-case always occurs when the pivot’s final

position is on an end of the array, which means it was either the smallest or

the largest element.



Sorting Algorithms 3

1.4 If the worst-case runtime of Quicksort is O(N2) while the worst-case runtime

of Mergesort is O(N logN), why do we ever use Quicksort?

In most cases, Quicksort actually performs very well, with an average run-

time of O(N logN). The probability that Quicksort ends up running in

O(N2) is, in reality, very, very low. There is a mathematical discussion

about this probability here.

Most implementations of MergeSort requires extra space (more arrays to be

created). However, there are more complicated ways to write a MergeSort

algorithm that doesn’t require any extra space, but Quicksort is still often

preferred when the number of elements being sorted isn’t extremely large.

The general idea for this is that if all the data being sorted fits inside your

RAM, then Quicksort is faster, since it doesn’t need to access data stored in

your Harddisk, which is slower. For reference, in 1GB RAM, we can hold an

array of 32 million integers. This means, that for almost all regular purposes,

Quicksort is faster. More information about this is available on the first and

second answer here.

2 Getting to Know You
2.1 Run MSD and LSD radix sort on the following DNA sequence such that the

output is sorted in alphabetical order (A < C < G < T ).

Most-Significant Digit

ACAG ACAG ACAG ACAG ACAA

CTAG ACAA ACAA ACAA ACAG

ACAA CTAG CCTC CCTC CCTC

TGAG CCTC CTAG CTAG CTAG

CCTC GAGT GAGT GAGT GAGT

GAGT TGAG TGAG TGAG TGAG

Least-Significant Digit

ACAG ACAA ACAA GAGT ACAA

CTAG CCTC ACAG ACAA ACAG

ACAA ACAG CTAG ACAG CCTC

TGAG CTAG TGAG CCTC CTAG

CCTC TGAG GAGT TGAG GAGT

GAGT GAGT CCTC CTAG TGAG

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort
https://stackoverflow.com/questions/70402/why-is-quicksort-better-than-mergesort


4 Sorting Algorithms

2.2 Performing Radix Sort seems to be a fast sorting algorithm. Why don’t we

always use it?

Radix sort is only possible when the elements being compared have some

radix or base. For strings, they can be broken up into individual characters

and separately compared, as we did above. We can also do the same for

integers. However, what if we wanted to compare 10 Cat objects? We

cannot compare Cat objects by breaking them up into any smaller pieces or

radices.

2.3 Why does Least-Significant Digit radix sort work?

The key is to maintain stability during sorting. If we make sure that at each

step we sort stably, then the following proof explains why LSD sort works.

Consider the final step of the algorithm, where we are sorting the first digit.

If two strings differ on the first character, then their ordering will now be

fixed, and since the previous steps of the algorithm relatively sorted the rest

of the string, the ordering will be fully correct.

If two strings do not differ on the first character, e.g., we having CAT

and CBX, we know that CAT would appear before CBX because of the

previous steps. All we have to ensure is that this final step doesn’t change

the ordering of CAX and CBX. This will be ensured, since we make sure

we sort stably.

3 More Asymptotics Potpourri

Algorithm Best-case Worst-case Stable

Counting Sort Θ(N + R) Θ(N + R) Yes

LSD Radix Sort Θ(W (N + R)) Θ(W (N + R)) Yes

MSD Radix Sort Θ(N + R) Θ(W (N + R)) Yes

Where N is the length of the list, R is the size of the alphabet (radix), and

W is the length of the longest word.

Extra: MSD radix sort is stable when implemented with additional space

for a buffer.



Sorting Algorithms 5

4 Berkeley Bytes Buffet
You are the proud owner of Berkeley Bytes Buffet and business is good! You

have a policy where children under 8 eat free and seniors eat 50 percent off.

Since you’re a savvy business owner, you keep the ages of all your customers.

4.1 For taxes, you must to submit a list of the ages of your customers in sorted

order. Define ageSort, which takes an int[] array of all customers’ ages

and returns a sorted array. Assume customers are less than 150 years old.

public class BerkeleyBytes {

private static int maxAge = 149;

public static int[] histogram(int[] ages) {

int[] ageCounts = new int[maxAge + 1];

for (int age : ages) {

ageCounts[age] += 1;

}

return ageCounts;

}

public static int[] ageSort(int[] ages) {

int[] ageCounts = histogram(ages);

int[] result = new int[ages.length];

int index = 0;

for (int age = 0; age < maxAge; age++) {

for (int count = 0; count < ageCounts[age]; count++) {

result[index] = age;

index += 1;

}

}

return result;

}

}



6 Sorting Algorithms

4.2 Time passes and your restaurant is doing well. Unfortunately, our robot

overlords advanced medicine to the point where humans are now immortal.

(a) How could we extend the algorithm to accept a list of any ages?

Radix sort. Sort the customers using the above algorithm, looking at

only the last digit of their age. We would need 10 buckets, since the

digit can only have 10 values. Repeat with the second to last digit, and

so on, until the first digit sorted.

(b) When would we be able to use this type of sort?

The keys we want to sort must have some base (or radix). The type of

item must be some combination of symbols.


