
CSM 61B Final Review
Spring 2019 Mentoring 13: April 29, 2019

1 Running Out of Time
1.1 Give a tight runtime bound for mystery as a function of N , the length of

the input array.

public static int[] mystery(int[] array) {

boolean done = false;

while (!done) {

done = true;

for (int i = 1; i < array.length; i++) {

if (array[i-1] > array[i]) {

done = false;

int tmp = array[i-1];

array[i-1] = array[i]

array[i] = tmp;

}

}

}

return array;

}

2 Final Review

1.2 Give a tight asymptotic bound for convoluted as a function of N , the length

of the input arrays a and b. If possible, give a Θ(·) bound for the overall

runtime. Otherwise, provide a Θ(·) bound for both the best case and worst

case runtime.

int[] convoluted(int[] a, int[] b) {

assert a.length == b.length;

int[] result = new int[a.length];

for (int i = 0; i < result.length; i += 1) {

for (int j = 0; j <= i; j += 1) {

result[i] += a[j] * b[i];

}

}

return result;

}

Final Review 3

1.3 Give a tight asymptotic bound for debugBinarySearch as a function of N ,

the length of the input array, a. If possible, give a Θ(·) bound for the overall

runtime. Otherwise, provide a Θ(·) bound for both the best case and worst

case runtime.

boolean debugBinarySearch(int[] a, int target) {

int start = 0;

int end = a.length - 1;

while (start <= end) {

int mid = ((end - start) / 2) + start;

if (a[mid] == target) {

return true;

} else if (a[mid] < target) {

start = mid + 1;

} else {

end = mid - 1;

}

System.out.print("Searching: [");

for (int i = start; i <= end; i++) {

System.out.print(a[i] + " ");

}

System.out.println("]");

}

return false;

}

4 Final Review

1.4 Give a tight asymptotic bound for mystery.

int mystery(int N) {

if (N == 0) {

return 0;

}

return mystery(N/3) + mystery(N/3) + mystery(N/3);

}

Final Review 5

2 Out of Sorts
2.1 Each column below gives the contents of a list at some step during sorting.

Match each column with its corresponding algorithm.

· Merge sort · Quicksort · Heap sort · LSD radix sort · MSD radix sort

For quicksort, choose the topmost element as the pivot. Use the recursive

(top-down) implementation of merge sort.

Start A B C D E Sorted

1 4873 1876 1874 1626 9573 2212 1626

2 1874 1874 1626 1874 7121 8917 1874

3 8917 2212 1876 1876 9132 7121 1876

4 1626 1626 1897 4873 6973 1626 1897

5 4982 3492 2212 4982 4982 9132 2212

6 9132 1897 3492 8917 8917 6152 3492

7 9573 4873 4873 9132 6152 4873 4873

8 1876 9573 4982 9573 1876 9573 4982

9 6973 6973 6973 1897 1626 6973 6152

10 1897 9132 6152 3492 1897 1874 6973

11 9587 9587 7121 6973 1874 1876 7121

12 3492 4982 8917 9587 3492 9877 8917

13 9877 9877 9132 2212 4873 4982 9132

14 2212 8917 9573 6152 2212 9587 9573

15 6152 6152 9587 7121 9587 3492 9587

16 7121 7121 9877 9877 9877 1897 9877

6 Final Review

3 T,F,G,V,E
3.1 State if the following statements are True or False, and justify. For all graphs,

assume that edge weights are positive and distinct, unless otherwise stated.

(a) Adding some positive constant k to every edge weight does not change

the shortest path tree from vertex S.

(b) Doubling every edge weight does not change the shortest path tree.

(c) Adding some positive constant k to every edge weight does not change

the minimum spanning tree.

(d) Doubling every edge weight does not change the minimum spanning

tree.

(e) Let (S, V − S) be a specific cut of the graph. If an edge e is not the

lightest edge across this cut, it cannot be a part of any MST.

(f) If an edge e is the lightest edge connected to vertex S, it must be a part

of the shortest path tree from vertex S.

Final Review 7

4 Roleplaying Game
4.1 You are the king of a large kingdom! In order to manage your kingdom, you

have appointed lords to rule towns within your kingdom. Every lord can

govern over his town and any town that he is connected to by road. Your

job as king is to figure out the optimal way to allocate lords and build roads.

Formally, consider a graph G with vertices V and edges E. Each vertex v

represents a town. It has an associated cost c, the cost of installing a lord

in the town. Each edge e represents a potential road. It has an edge weight

w, the cost of building that road. Devise an algorithm that can efficiently

compute which towns to install lords in and which roads to build, such that

every town in the kingdom is governed (either has a lord in it or is connected

by some number of roads to a town with a lord in it).

8 Final Review

5 Largest Perimeter Triangle
5.1 Given an array A of positive lengths, return the largest perimeter of a triangle

with non-zero area, formed from 3 of these lengths. Recall the Triangle

Inequality, which states that for any triangle, the sum of the lengths of any

two sides must be greater than or equal to the length of the remaining side

(a + b > c). If it is impossible to form any triangle of non-zero area, return

0.

For example, A = [2, 1, 2] returns 5. A = [1, 2, 1] returns 0. A = [3, 2, 3,

4] returns 10.

What is the runtime of your solution?

public int largestPerimeter(int[] A) {

}

Note: this problem was adapted from LeetCode (https://leetcode.com/problems/largest-

perimeter-triangle/).

