CoM 61B Final Review
Spring 2019 Mentoring 13: April 29, 2019

| Running Out of Time

1.1 Give a tight runtime bound for mystery as a function of N, the length of

the input array.

public static int[] mystery(int[] array) {
boolean done = false;
while (!done) {
done = true;
for (int i = 1; i < array.length; i++) {
if (array[i-1]1 > array[il) {
done = false;
int tmp = arrayl[i-11;
array[i-1] = array[il

array[i] = tmp;

}

return array;

This sorting algorithm, known as bubble sort, makes repeated passes through
the array, swapping adjacent elements if they are out of order. The algorithm

terminates if it completes a pass without swapping any elements.

Each pass must look through all elements of the array, and in the worse
case, if the initial array is in reverse sorted order, makes N passes through

the array. The runtime for this function is O(N?).

2 Final Review

1.2 Give a tight asymptotic bound for convoluted as a function of IV, the length
of the input arrays a and b. If possible, give a O(:) bound for the overall
runtime. Otherwise, provide a O(-) bound for both the best case and worst

case runtime.

int[] convoluted(int[] a, int[] b) {
assert a.length == b.length;
int[] result = new int[a.length];
for (int i = @; i < result.length; i += 1) {
for (int j =0; j<=1i; j +=1) {
result[i] += alj] = b[il;

}
}
return result;
3
O(N?)

For the first iteration of the outer for loop, the inner loop will run once. The
next iteration, the inner loop runs two times. Each subsequent iteration of
the outer loop increases the number of iterations of the inner loop by 1. The
total runtime is given by 27]\;1 = O(N?)

Final Review 3

1.3 Give a tight asymptotic bound for debugBinarySearch as a function of N,
the length of the input array, a. If possible, give a ©(-) bound for the overall
runtime. Otherwise, provide a O(-) bound for both the best case and worst

case runtime.

boolean debugBinarySearch(int[] a, int target) {
int start = 0;
int end = a.length - 1;

while (start <= end) {
int mid = ((end - start) / 2) + start;
if (almid] == target) {
return true;
} else if (a[lmid] < target) {
start = mid + 1;
} else {
end = mid - 1;

System.out.print("Searching: [");
for (int i = start; i <= end; i++) {
System.out.print(ali]l + " ");

}
System.out.println("1");

3

return false;

©(N) in the worst case, ©(1) in the best case.

Normally binary search runs in O(log(N)) in the worst case. However, for
this function, it also prints out the values of the list it is considering for each
iteration of the while loop. In the worst case, you would perform log(N)
iterations of your while loop, and your for loop would run % + % 4. 4+44+2+1
times, which would be ©(N) runtime. However, in the best case, you could

find your target immediately and return in constant time.

4 Final Review

1.4 Give a tight asymptotic bound for mystery.

int mystery(int N) {

if (N==20) {
return 0;
}
return mystery(N/3) + mystery(N/3) + mystery(N/3);
}
O(N)

This is a recursive function with a branching factor of 3. If you draw a tree
with all the recursive calls, there will be log(N) levels before the function
terminates. There is 1 function call at the top level, 3 recursive calls at
the next level, 9 recursive calls at the third level, and each subsequent level
triples the number of recursive calls. Since each recursive call does constant
work, the total runtime is 3° 43" 4-324...4+-3°90N) = 143494 ..+ N = O(N)

Final Review 5

Y Out of Sorts

2.1 Each column below gives the contents of a list at some step during sorting.

Match each column with its corresponding algorithm.
- Merge sort - Quicksort - Heap sort - LSD radix sort - MSD radix sort

For quicksort, choose the topmost element as the pivot. Use the recursive

(top-down) implementation of merge sort.

Start A B C D E Sorted
1 4873 1876 1874 1626 9573 2212 1626
2 1874 1874 1626 1874 7121 8917 1874
3 8917 2212 1876 1876 9132 7121 1876
4 1626 1626 1897 4873 6973 1626 1897
5 4982 3492 2212 4982 4982 9132 2212

6 9132 1897 3492 8917 8917 6152 3492

7 9573 4873 4873 9132 6152 4873 4873

8 1876 9573 4982 9573 1876 9573 4982

9 6973 6973 6973 1897 1626 6973 6152

10 1897 9132 6152 3492 1897 1874 6973

11 9587 9587 7121 6973 1874 1876 7121

12 3492 4982 8917 9587 3492 9877 8917

13 9877 9877 9132 2212 4873 4982 9132

14 2212 8917 9573 6152 2212 9587 9573

15 6152 6152 9587 7121 9587 3492 9587

16 7121 7121 9877 9877 9877 1897 9877

From left to right: unsorted list, quicksort, MSD radix sort, merge sort, heap

sort, LSD radix sort, completely sorted.

MSD Look at the left-most digits. They should be sorted. Mark this
immediately as MSD.

LSD One of the digits should be sorted. Start by looking at the right most
digit of the remaining sorts. Then check the second from right digit

of the remaining sorts and so on. As soon as you find one in which at

6 Final Review

least something is sorted, mark that as LSD.

Heap Max-oriented heap so check that the bottom is in sorted order and

that the top element is the next max element.

Merge Realize that the first pass of merge sort fixes items in groups of 2.

Identify the passes and look for sorted runs.

Quick Run quicksort using the pivot strategy outlined above. Look for

partitions and check that 4873 is in its correct final position.

3

Final Review 7

TFGVE

3.1 State if the following statements are True or False, and justify. For all graphs,

assume that edge weights are positive and distinct, unless otherwise stated.

(a)

Adding some positive constant k to every edge weight does not change

the shortest path tree from vertex S.

False.

Doubling every edge weight does not change the shortest path tree.
True.

Adding some positive constant k to every edge weight does not change

the minimum spanning tree.
True.

Doubling every edge weight does not change the minimum spanning

tree.

True.

For the four parts above, we can consider when graph transformations
affect the two algorithms:

MST algorithms depend on the relative order of edge weights. Hence,
adding a constant, or doubling the edge weights does not alter the MST.
(More broadly, any monotonically increasing function can be applied,

such as squaring the edge weights, assuming they are all positive.)

Shortest path algorithms depend on the relative order of sums of edge
weights. More specifically, we are concerned about sums of edge weights
that represent paths to vertices in the graphs. We can see then that
adding a constant k to all edge weights does alter the relative order of
these sums. In fact, as k increases, the algorithm becomes more biased
towards paths that are shorter in hop-length, i.e. number of vertices in
the path. One intuitive way to think about this would be to make k a
very large number, tending towards infinity. Then all edge weights are
approximately the same length, and shortest path algorithms will find
the shortest path by hop-length, just like BF'S. On the other hand, if we
double every edge weight, the relative order of sums does not change.
2w +2we 4 2ws = 2(wy +wao+ws). We see that we can factorize out the
multiplier, and the ordering is still dependent on the original sums of
edge weights. More broadly, we can consider any positive multiplication

of edge weights to not affect shortest path trees.

8 Final Review

()

Let (S,V — S) be a specific cut of the graph. If an edge e is not the
lightest edge across this cut, it cannot be a part of any MST.

False. Consider the graph {(A, B,1),(B,C,2)}. Even though edge
(B, () is not the lightest edge across the cut {A},{B,C}, it is neces-
sarily still a part of all MSTs (since this graph is a tree).

If an edge e is the lightest edge connected to vertex S, it must be a part

of the shortest path tree from vertex S.

True. If e connects S to T', then that must be the shortest path from
S to T'. Assume there is some shorter path to 7' from S. Then it must
exit S via edge ¢ which has strictly larger weight than e, creating a

contradiction.

Final Review 9

4 Rolep]aying (Game

4.1 You are the king of a large kingdom! In order to manage your kingdom, you
have appointed lords to rule towns within your kingdom. Every lord can
govern over his town and any town that he is connected to by road. Your

job as king is to figure out the optimal way to allocate lords and build roads.

Formally, consider a graph G with vertices V and edges E. Each vertex v
represents a town. It has an associated cost ¢, the cost of installing a lord
in the town. Each edge e represents a potential road. It has an edge weight
w, the cost of building that road. Devise an algorithm that can efficiently
compute which towns to install lords in and which roads to build, such that
every town in the kingdom is governed (either has a lord in it or is connected

by some number of roads to a town with a lord in it).

We can formulate this problem as a Minimum Spanning Tree problem. We
create a dummy node S. We connect S to every vertex with edge weight c,
the cost of that vertex. We then find the MST of this modified graph, and
that is the solution. Why does this method work? We know that the MST
must include S, by definition of spanning tree. Every edge in te MST that
is outgoing from S represents a selected town. In the MST, every vertex is
either directly connected to S, i.e. a town with a lord, or connected to S by
a series of selected edges, i.e. connected to some town with a lord via some
roads. Since the MST finds the minimum cost solution, this is our desired

arrangement of lords and roads

10 Final Review

D Largest Perimeter Triang]e

Given an array A of positive lengths, return the largest perimeter of a triangle
with non-zero area, formed from 3 of these lengths. Recall the Triangle
Inequality, which states that for any triangle, the sum of the lengths of any
two sides must be greater than or equal to the length of the remaining side
(a+b> c). If it is impossible to form any triangle of non-zero area, return
0.

For example, A = [2, 1, 2] returns 5. A = [1, 2, 1] returns 0. A = [3, 2, 3,
4] returns 10.

What is the runtime of your solution?

public int largestPerimeter(int[] A) {

3

Note: this problem was adapted from LeetCode (https://leetcode.com/problems/largest-

perimeter-triangle/).

Note: this solution was adapted from LeetCode (https://leetcode.com/problems/largest-

perimeter-triangle/solution/).

Without loss of generality, say the side lengths of the triangle are a < b < c.
The necessary and sufficient condition for these lengths to form a triangle of

non-zero area is a +b > c.

Say we knew ¢ already. There is no reason not to choose the largest possible
a and b from the array. If a + b > ¢, then it forms a triangle, otherwise it

doesn’t.

This leads to a simple algorithm: sort the array. For any c in the array, we
choose the largest possible a < b < ¢: these are just the two values adjacent

to c. If this forms a triangle, we return the answer. Else, we return 0.

Final Review 11

Thus, we complete our function as follows:

public int largestPerimeter(int[] A) {
Arrays.sort(A);
for (int i = A.length - 3; i >= 0; --i) {
if (A[i] + ALi+1] > A[i+2]) {
return A[i] + A[i+1] + A[i+2];

b

return 0;

b

This function takes O(N log N) time to sort A and O(NV) time to iterate
through the for loop. Thus, the overall runtime is given by O(N log N).

