CSM 61B Final Review
Spring 2019 Mentoring 14: November 27, 2017

| Potpourri

1.1 Each of the following sequences represent an array being sorted at some
intermediate step. Match each sample with one of the sorting algorithms:
insertion sort, selection sort, heapsort, merge sort, quicksort. The

original array is below.
5103 9914 0608 3715 6035 2261 9797 7188 1163 4411

5103 9914 0608 3715 2261 6035 7188 9797 1163 4411
0608 2261 3715 5103 6035 7188 9797 9914 1163 4411

(a)

Merge sort

0608 1163 5103 3715 6035 2261 9797 7188 9914 4411
0608 1163 2261 3715 6035 5103 9797 7188 9914 4411

(b)
Selection sort

()

9797 7188 5103 4411 6035 2261 0608 3715 1163 9914
4411 3715 2261 0608 1163 5103 6035 7188 9797 9914

Heapsort

5103 0608 3715 2261 1163 4411 6035 9914 9797 7188
0608 2261 1163 3715 5103 4411 6035 9914 9797 7188

(d)

Quicksort

0608 5103 9914 3715 6035 2261 9797 7188 1163 4411
0608 2261 3715 5103 6035 9914 9797 7188 1163 4411

(e)

Insertion sort



2  Final Review

1.2 Give the amortized runtime analysis for push and pop for the priority queue

below.

class TwinListPriorityQueue<E implements Comparable> {
ArrayList<E> L1, L2;
void push(E item) {
L1.push(elem);
if (L1.size() >= Math.log(L2.size())) {
L2.addA11(L1);

mergeSort(L2);
L1.clear();
}
}
E pop() {

E min1 = getMin(L1);

E min2 = L2.poll();

if (min1.compareTo(min2) < @) {
L1.remove(min1);
return minl;

} else {
L2.remove(min2);
return min2;

}

}

Let N be the number of elements in the priority queue. Then the amortized
runtime for push is in O(N) as the cost for every log N insertions is in
O(log N -141- Nlog N) which simplifies to O(N). Note that the size of L1

is always constrained to be in O(log N).

The amortized runtime for pop is also in O(N). getMin on the unsorted list,
L1, is in O(log V), as with L1.remove(min1). Polling from the front of L2

is in ©(1). The most expensive component is L2.remove(min2) which is in
O(N).



1.3

1.4

Final Review 3

You have been hired by Alan to help design a priority queue implementation
for Kelp, the new seafood review startup, ordered on the timestamp of each

Review.

Describe a data structure that supports the following operations.

insert(Review r) a Review in O(log N).

edit(int id, String body) any one Review in ©(1).

sixtyOne(): return the sixty-first latest Review in O(1).

pollSixtyOne(): remove and return the sixty-first latest Review in
O(log N).

Maintain a max-heap called firstSixtyOne with 61 Reviews, a min-heap
called olderReviews with all the rest, and a HashMap mapping any given
integer id to its corresponding Review.

Find the Huffman encoding for the following alphabet and set of frequencies.
{(a,0.12), (b,0.38), (¢, 0.1), (e, 0.25), (f,0.06), (d,0.05), (g,0.01), (h,0.03)}

When you build up your Huffman tree, you should place the branch of lower
weight on the left. A left or right branch should respectively correspond to

a 0 or 1 in the codeword.

a=1111
b=20
c=1110
d=11011
e=10
f=1100
g = 110100

h =110101



